Telegram Group & Telegram Channel
💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

This Week's Presentation:

🔹 Title: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback

🔸 Presenter: Amir Kasaei

🌀 Abstract:
Recent advancements in text-conditioned image generation, particularly through latent diffusion models, have achieved significant progress. However, as text complexity increases, these models often struggle to accurately capture the semantics of prompts, and existing tools like CLIP frequently fail to detect these misalignments.

This presentation introduces a Decompositional-Alignment-Score, which breaks down complex prompts into individual assertions and evaluates their alignment with generated images using a visual question answering (VQA) model. These scores are then combined to produce a final alignment score. Experimental results show this method aligns better with human judgments compared to traditional CLIP and BLIP scores. Moreover, it enables an iterative process that improves text-to-image alignment by 8.7% over previous methods.

This approach not only enhances evaluation but also provides actionable feedback for generating more accurate images from complex textual inputs.

📄 Paper: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback


Session Details:
- 📅 Date: Sunday
- 🕒 Time: 2:00 - 3:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️



tg-me.com/RIMLLab/133
Create:
Last Update:

💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

This Week's Presentation:

🔹 Title: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback

🔸 Presenter: Amir Kasaei

🌀 Abstract:
Recent advancements in text-conditioned image generation, particularly through latent diffusion models, have achieved significant progress. However, as text complexity increases, these models often struggle to accurately capture the semantics of prompts, and existing tools like CLIP frequently fail to detect these misalignments.

This presentation introduces a Decompositional-Alignment-Score, which breaks down complex prompts into individual assertions and evaluates their alignment with generated images using a visual question answering (VQA) model. These scores are then combined to produce a final alignment score. Experimental results show this method aligns better with human judgments compared to traditional CLIP and BLIP scores. Moreover, it enables an iterative process that improves text-to-image alignment by 8.7% over previous methods.

This approach not only enhances evaluation but also provides actionable feedback for generating more accurate images from complex textual inputs.

📄 Paper: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback


Session Details:
- 📅 Date: Sunday
- 🕒 Time: 2:00 - 3:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️

BY RIML Lab


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/RIMLLab/133

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

RIML Lab from cn


Telegram RIML Lab
FROM USA